

## Double limits and differentiability

Given the function:  $f(x, y) = 2x^3y + y \sin\left(\frac{1}{x}\right)$

1. Compute, if they exist, at the origin: the double limit, iterated limits, and radial limit.
2. Analyze continuity and differentiability at the origin.

## Solutions

### 1) Calculation of limits at the origin

We want to compute:

$$\lim_{(x,y) \rightarrow (0,0)} f(x,y)$$

We observe that the function  $f(x,y)$  is not defined for  $x = 0$  due to the term  $\sin\left(\frac{1}{x}\right)$ . However, we can analyze the behavior of the limit as  $x \rightarrow 0$  and  $y \rightarrow 0$  with  $x \neq 0$ .

Consider that  $\sin\left(\frac{1}{x}\right)$  is bounded between  $-1$  and  $1$ :

$$-1 \leq \sin\left(\frac{1}{x}\right) \leq 1$$

Likewise, the term  $2x^3y$  approaches zero as  $(x,y) \rightarrow (0,0)$  because  $x^3 \rightarrow 0$  and  $y \rightarrow 0$ .

**Applying the bounded-by-infinitesimal theorem:**

Since  $\sin\left(\frac{1}{x}\right)$  is bounded and  $y \rightarrow 0$ , the product  $y \sin\left(\frac{1}{x}\right)$  approaches zero.

Thus, we can write:

$$\lim_{(x,y) \rightarrow (0,0)} f(x,y) = \lim_{(x,y) \rightarrow (0,0)} \left( 2x^3y + y \sin\left(\frac{1}{x}\right) \right) = 0 + 0 = 0$$

*Iterated limits:*

**First:**  $\lim_{x \rightarrow 0} \left( \lim_{y \rightarrow 0} f(x,y) \right)$

Compute the inner limit:

$$\lim_{y \rightarrow 0} f(x,y) = \lim_{y \rightarrow 0} \left( 2x^3y + y \sin\left(\frac{1}{x}\right) \right) = 0$$

Because  $y \rightarrow 0$  and the terms are proportional to  $y$ .

Now, the outer limit:

$$\lim_{x \rightarrow 0} 0 = 0$$

Thus:

$$\lim_{x \rightarrow 0} \left( \lim_{y \rightarrow 0} f(x,y) \right) = 0$$

**Second:**  $\lim_{y \rightarrow 0} \left( \lim_{x \rightarrow 0} f(x,y) \right)$

Compute the inner limit for  $x \neq 0$ :

$$\lim_{x \rightarrow 0} f(x,y) = \lim_{x \rightarrow 0} \left( 2x^3y + y \sin\left(\frac{1}{x}\right) \right)$$

**This limit does not exist.**

*Radial limit:*

Define first:

$$y = mx$$

Now compute the limit:

$$\lim_{x \rightarrow 0} \left( 2x^3mx + mx \sin\left(\frac{1}{x}\right) \right)$$

**Using the bounded-by-infinitesimal theorem, we can assert that the limit is 0.**

## 2) Continuity and differentiability at the origin

*Continuity at the origin:*

The function  $f(x, y)$  is not defined for  $x = 0$  due to the term  $\sin\left(\frac{1}{x}\right)$ . Therefore,  $f$  is not defined at  $(0, 0)$ , and it cannot be continuous there.

However, if we extend the definition of  $f$  at the origin by setting  $f(0, 0) = 0$  (the value of the limit), we still need to verify if the function is continuous at  $(0, 0)$ .

Since the limit as we approach the origin is zero and  $f(0, 0) = 0$ , we can say that the function is continuous at  $(0, 0)$  **if properly extended**.

*Differentiability at the origin:*

For  $f$  to be differentiable at  $(0, 0)$ , it must be continuous at that point and have a differential.

Compute the partial derivatives (for  $x \neq 0$ ):

$$\frac{\partial f}{\partial x} = 6x^2y + y \cos\left(\frac{1}{x}\right) \left(-\frac{1}{x^2}\right)$$

$$\frac{\partial f}{\partial y} = 2x^3 + \sin\left(\frac{1}{x}\right)$$

When trying to evaluate these derivatives at  $(0, 0)$ , we encounter problems:

- $\frac{\partial f}{\partial x}$  is not defined for  $x = 0$  due to the term  $\frac{1}{x^2}$ .
- $\frac{\partial f}{\partial y}$  includes the term  $\sin\left(\frac{1}{x}\right)$ , which is not defined for  $x = 0$ .

Thus, the partial derivatives at  $(0, 0)$  do not exist, and  $f$  cannot be differentiable at the origin.

**Conclusion:**

- The function  $f(x, y)$  has a limit at the origin, which is zero.
- If  $f$  is extended by defining  $f(0, 0) = 0$ , the function is continuous at  $(0, 0)$ .
- The partial derivatives at  $(0, 0)$  do not exist or are not continuous, so  $f$  is not differentiable at  $(0, 0)$ .